Intersensory Causality Modeling using Deep Neural Networks

Kuniaki Noda, Hiroaki Arie, Yuki Suga and Tetsuya Ogata

Waseda University, Tokyo, Japan

October 15, 2013 SMC2013 @ Manchester, UK

Multimodal integration

Humans enhance perceptual precision and reduce ambiguity by integrating multimodal information (Ernst2004, Stein1993)

Computational models that replicate human multimodal integration ability may contribute to robots working in human environments

Action-effect causality understanding

Sensory prediction in response to the self action

<u>Construct abstracted</u> <u>internal representation</u> <u>for recognition</u>

Multimodal integration learning

• Applications for the learning of robotic behaviors

(Sauser and Billard, 2006)

Dedicated sensory feature extraction mechanisms

Multimodal integration by deep neural networks

Deep Neural Networks

- *G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, 2006.*
 - Epoch-making article which leads to the current trends for the deep learning
 - Utilize RBM for training single layer network in the pre-training phase, followed by the entire layer training in the fine-tuning phase
- J. Martens, "Deep learning via Hessian-free optimization," ICML, 2010.
 - Utilize quadratic programming
 - Pre-training is not required
 - Optimization algorithm based on the Newton's method contributes in faster convergence

We adopt Hessian-free optimization for the training algorithm

Time-delay autoencoder

- Temporal sequence learning by a deep autoencoder
 - Compresses multimodal temporal segments
 - Models inter-dimensional correlations
 - Retrieves temporal sequence in cross-modal

Bell ring task by a humanoid robot

Multimodal integration mechanism

Bell placement configurations

3 kinds of bells

Color	Pitch notation
RED	С
GREEN	F
BLUE	Α

6 placement variations

Image retrieval from sound and motion

October 15, 2013 Kuniaki Noda SMC2013 @ Manchester, UK

Correlation between generated motion and retrieved images

Bell image prediction accuracy for the region where the arm motion coincide outperforms the other

October 15, 2013 Kuniaki Noda SMC2013 @ Manchester, UK

Sensory-motor integrated feature space

Phase-wise motion is represented on a plane and the bell placement configuration is structured on the third axis

October 15, 2013 Kuniaki Noda SMC2013 @ Manchester, UK

Conclusion

- Multimodal sensory-motor integration learning
 - A novel computational framework for the temporal sequence learning utilizing a deep neural network
- Intersensory causality modeling
 - Image sequence retrieval based on the the acquired sensory-motor causality
- Self-organization of multimodal feature space
 - Phase-wise sensory-motor integrated feature is structured on the modal dependent coordinates

Time window

Thank you!

The authors would like to thank **the Hara Research Foundation** for their financial support.

The work has been supported by JST PRESTO "Information Environment and Humans" and MEXT Grant-in-Aid for Scientific Research on Innovative Areas "Constructive Developmental Science" (24119003).