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Background

® Robot control under open-ended
environment

® Noise robust environment recognition
e Adaptive behavior control

Real-time large-scale sensory-motor information
processing is essential

® Deep learning
® Trained with large scale data
® Higher-order representation is self-organized

® Breakthrough in machine learning
® Large scale visual recognition challenge (1LsvRC2012)

Applications for robots have yet to be (Googlejafilcialblo ittty

investigated .
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Research objective

Sensory-motor integration of robot behaviors
utilizing deep neural network
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[ Large scale real world data processing ]

+

[ Crossmodal memory retrieval and temporal sequence prediction ]

>

Adaptive behavior control of a humanoid robot
depending on the environmental changes

Verification experiment
by object manipulation tas
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Deep learning

® G. E. Hinton and R. R. Salakhutdinov, "Reducing

[30]
the dimensionality of data with neural T
networks,” Science, 2006. | |
[ 500 ]

® Epoch-making article which leads to the current

trends for the deep learning
e Utilize RBM for training single layer network in the 5w |

pre-training phase, followed by the entire layer

training in the fine-tuning phase —w | |

* . Martens, "Deep learning via Hessian-free ‘ »

Opt/'m/.zation///.[CML/ 20]0' Pretraining i Fine-tuning
e Utilize quadratic programming allidelay, ),

® Pre-training is not required
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® Optimization algorithm based on the Newton's
method contributes in faster convergence

error

We adopt Hessian-free optimization as the

‘ aining algorithm

tr




Multimodal integration mechanism
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Image feature extraction network

Reconstructed image

® Image feature extraction by deep autoencoder

® High-precision dimensionality compression performance 900 dims
® Reconstruct images from the compressed features
® General sensory feature extraction framework
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Multimodal temporal sequence
learning network

r

® Temporal sequence learning by
time-delay autoencoder
® Multimodal integration
® Self-organize sensory-motor
feature space
® Utilized for crossmodal memory
retrieval and temporal
\_ sequence prediction
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Crossmodal memory retrieval
and temporal sequence prediction
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Evaluation experiment

Sensory-motor integration learning of object manipulation
behaviors

® 6 object manipulation behaviors

Sensory-motor data
e 20x15 RGB image: 900 dims
e Arm joint angles: 10 DOF

® Time window: 30 StepS Bell ring : Ball rolling on a plate  Ropeway
| Training | Test | I/Odim. | Network structure
Image feat. 8444 948 900 1000-500-250°150-80-30

-80-150-250-500-1000

1000-500-250-150-80-30
Temp. seq. 6848 776 1200 -80-150-250-500-1000

Optimization utilizing GPGPU (CUBLAS)
® 30 min. each for the feature extraction
and the temporal sequence learning
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Image feature space and image
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Image retrieval from motion
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Temporal sequence prediction
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Conclusion and future work

(o Multimodal integration learning of robot behaviors
utilizing deep neural networks

® |arge scale real-world sensory-motor information processing

e Crossmodal memory retrieval and temporal sequence prediction

e Adaptive robot behavior control regarding environmental
changes
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® Robust image recognition
® [ncrease variations of the environment lighting condition
® | ocal feature extraction networks (e.g. Convolution network)

® Analysis on the internal structure of the networks

® Relationship between the network structure and the learning
capability
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