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Background 

 Robot control under open-ended 
environment 
 Noise robust environment recognition 

 Adaptive behavior control 

 

 

 Deep learning 
 Trained with large scale data 

 Higher-order representation is self-organized 

 Breakthrough in machine learning 

 Large scale visual recognition challenge (ILSVRC2012) 
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Real-time large-scale sensory-motor information 
processing is essential 

Applications for robots have yet to be 
investigated 

(Google official blog, 2012) 



Research objective 
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Crossmodal memory retrieval and temporal sequence prediction 

Large scale real world data processing 

Verification experiment 
by object manipulation task 

Sensory-motor integration of robot behaviors 
utilizing deep neural network 

Adaptive behavior control of a humanoid robot 
depending on the environmental changes 



Deep learning 

 G. E. Hinton and R. R. Salakhutdinov, “Reducing 
the dimensionality of data with neural 
networks,” Science, 2006. 

 Epoch-making article which leads to the current 
trends for the deep learning 

 Utilize RBM for training single layer network in the 
pre-training phase, followed by the entire layer 
training in the fine-tuning phase 

 J. Martens, “Deep learning via Hessian-free 
optimization,” ICML, 2010. 

 Utilize quadratic programming 

 Pre-training is not required 

 Optimization algorithm based on the Newton's 
method contributes in faster convergence 

(Hinton, 2006) 

(Martens, 2010) 

We adopt Hessian-free optimization as the 
training algorithm 
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Multimodal integration mechanism 
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Image feature extraction network 
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 Image feature extraction by deep autoencoder 
 High-precision dimensionality compression performance 
 Reconstruct images from the compressed features 
 General sensory feature extraction framework 



Multimodal temporal sequence 
learning network 
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 Temporal sequence learning by 
time-delay autoencoder 
 Multimodal integration 
 Self-organize sensory-motor 

feature space 
 Utilized for crossmodal memory 

retrieval and temporal 
sequence prediction 
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Crossmodal memory retrieval 
and temporal sequence prediction 



Evaluation experiment 

 Sensory-motor integration learning of object manipulation 
behaviors 

 6 object manipulation behaviors 

 Sensory-motor data 

 20x15 RGB image: 900 dims 

 Arm joint angles: 10 DOF 

 Time window: 30 steps 

 

 

 

 Optimization utilizing GPGPU (CUBLAS) 

 30 min. each for the feature extraction 

and the temporal sequence learning 
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Ball lift Ball rolling Bell ring R 

Bell ring L Ball rolling on a plate Ropeway 

Training Test I/O dim. Network structure 

Image feat. 8444 948 900 
1000-500-250-150-80-30 
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Temp. seq. 6848 776 1200 
1000-500-250-150-80-30 
-80-150-250-500-1000 
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Image retrieval from motion 
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Temporal sequence prediction 
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Ropeway  Bell ring R  Bell ring L  Bell ring R 



Conclusion and future work 

 Robust image recognition 
 Increase variations of the environment lighting condition 

 Local feature extraction networks (e.g. Convolution network) 
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 Multimodal integration learning of robot behaviors 
utilizing deep neural networks 

 Large scale real-world sensory-motor information processing 

 Crossmodal memory retrieval and temporal sequence prediction 

 Adaptive robot behavior control regarding environmental 
changes 

 Analysis on the internal structure of the networks 
 Relationship between the network structure and the learning 

capability 
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Thank you! 
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